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Remotely sensed agricultural modification improves prediction
of suitable habitat for a threatened lizard
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ABSTRACT
The geographical distribution of a species is limited by factors
such as climate, resources, disturbances and species interactions.
Environmental niche models attempt to encapsulate these limits
and represent them spatially but do not always incorporate dis-
turbance factors. We constructed MaxEnt models derived from a
remotely sensed vegetation classification with, and without, an
agricultural modification variable. Including agricultural modifica-
tion improved model performance and led to more sites with
native vegetation and fewer sites with exotic or degraded native
vegetation being predicted suitable for A. parapulchella. Analysis
of a relatively well-surveyed sub-area indicated that including
agricultural modification led to slightly higher omission rates but
markedly fewer likely false positives. Expert assessment of the
model based on mapped habitat also suggested that including
agricultural modification improved predictions. We estimate that
agricultural modification has led to the destruction or decline of
approximately 30–35% of the most suitable habitat in the sub-area
studied and approximately 20–25% of suitable habitat across the
entire study area, located in the Australian Capital Territory,
Australia. Environmental niche models for a range of species,
particularly habitat specialists, are likely to benefit from incorpor-
ating agricultural modification. Our findings are therefore relevant
to threatened species planning and management, particularly at
finer spatial scales.
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Introduction

Environmental niche models (Guisan and Zimmermann 2000, Elith et al. 2006, Sillero
2011, Warren 2012, 2013) are commonly applied to predictions of the occurrence of
species or communities to support conservation management and planning (Pearce and
Lindenmayer 1998, Ferrier et al. 2002, Loiselle et al. 2003, Raxworthy et al. 2003, Guisan
and Thuiller 2005, Pearson 2007). Such models usually incorporate limiting or sceno-
poetic factors that relate to the eco-physiology of a species (Hutchinson 1978); bionomic
factors, such as food, water and shelter (Hutchinson 1978, Guisan and Thuiller 2005) or
natural and human-caused disturbances, which can influence both limiting factors and
availability of resources. Therefore, when dealing with species that are adversely affected
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by disturbance and/or species with low rates of dispersal or migration, incorporating
disturbance is likely to be critical.

Anthropogenic disturbance such as the intensification of agriculture and land clearing
threaten biodiversity (Perrings et al. 2006, Hoffmann et al. 2010) and therefore will affect
species distribution in many parts of the world. The relative influence of key threatening
processes may vary according to location and species of interest. For example, roads, hunting,
recreational disturbance and pollution are key threatening processes for mammals, reptiles
and amphibians in Canada (McCune et al. 2013). Habitat loss, inappropriate fire regimes and
invasive species are themajor threats to species in Australia, withmuch of this associatedwith
habitat clearance for agriculture in southwestern, eastern and southeastern Australia (Evans
et al. 2011). As agricultural modification increases, habitat specialists face a higher risk of
extinction whilst generalists often benefit, leading to ecosystem homogenisation
(Foufopoulos and Ives 1999, McKinney and Lockwood 1999). Agricultural disturbance has
led to declines in many Australian taxa (Brown 2001, Hero and Morrison 2002, Benton et al.
2003, Maron and Lill 2005, Brown et al. 2008, Evans et al. 2011, Webb et al. 2014). Livestock
grazing and the addition of fertiliser are two widespread forms of agricultural modification
that have led to changes in plant species composition and richness as well as changes to
habitat structure (Clarke 2003, McIntyre and Tongway 2005, Klimek et al. 2007, Dorrough and
Scroggie 2008) with subsequent impacts on animal communities (Brown 2001, James 2003,
McIntyre 2005). In particular, reptiles have been found to respond negatively to the addition of
fertiliser as well as other key drivers such as land clearing and ploughing (Dorrough et al. 2012,
Webb et al. 2014). It is evident that management interventions that address these issues are
essential for effective conservation on agricultural land. Such interventions are therefore likely
to play a key role in arresting species decline (Perrings et al. 2006, Pereira et al. 2010).

Given the importance of agricultural modification in Australia and many other parts
of the world, environmental niche models that incorporate agricultural disturbance
factors known to affect certain species should improve prediction of suitable habitat
for those species. Nevertheless, disturbance variables are not always included in envir-
onmental niche models, partly because they are more difficult to incorporate into the
modelling framework than bioclimatic variables (Guisan and Zimmermann 2000, Lippitt
et al. 2008). The increasing availability of fine-scale land cover data derived from remote
sensing offers the potential to improve existing models (Ferrier et al. 2002) and land
cover or remotely sensed data have been successfully incorporated into environmental
niche models using both coarse-grained data (Raxworthy et al. 2003, Pearson et al. 2004,
Luoto et al. 2006, Heikkinen et al. 2007) and fine-grained data (Engler et al. 2004, Van
Manen et al. 2005, Guisan et al. 2006, Marage et al. 2007, Le Lay et al. 2010, Gogol-
Prokurat 2011, Messick and Hoagland 2013, Wilson et al. 2013).

Here, we test the prediction that incorporating fine-grain, remotely sensed vegeta-
tion-type data that is indicative of agricultural modification improves the performance of
an environmental niche model for a disturbance-sensitive lizard, Aprasia parapulchella.
We used MaxEnt models to test for the influence of agricultural modification on models
predicting suitable habitat for this vulnerable species at a spatial scale of approximately
50 km × 50 km and grain size of 25 m. We find that incorporating agricultural dis-
turbance into the model reduces the likelihood of errors of commission. Our findings
and the methods we use could be applied to test the relative importance of agricultural
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vegetation modification versus other environmental factors for other threatened species
in landscapes dominated by agricultural land-use.

Methods

To examine the effect of agricultural modification on the modelling, we took the
following steps:

(1) Created MaxEnt models with and without the agricultural modification variable.
(2) Determined the differences between the models using a test area.
(3) Determined the differences in the models with respect to vegetation classes that

were predicted as suitable.
(4) Assessed differences between areas predicted suitable in each of the models with

reference to habitat mapped in the field.

Study area

This study was conducted in south-eastern Australia in the Australian Capital Territory
(ACT) and New South Wales (NSW), Australia (centroid: −35.334167, 149.119167 DD) in
an area of 52.2 km × 50.95 km which encompasses most of the known location records
of A. parapulchella in the ACT and surrounding region (Figure 1). We built the environ-
mental niche model for this entire 2660 km2 study area (2088 rows × 2038 col-
umns × 25m grid cells), and then designated two smaller sub-areas within it to further
test the model. Sub-area 1 (Figure 1) is approximately 6 km × 7 km and exhibits varying
levels of historical agricultural modification. This sub-area was chosen for testing as
there was a good level of prior knowledge about habitat and occurrence over much of
the site (Barrer 1992, Osborne and Wong 2010, Wong and Osborne, unpublished data)
and because it represents a relatively large area of land with varying degrees of
agricultural modification. Land in Sub-area 1 within the Molonglo River Corridor had
undergone lower levels of modification through agricultural activities such as grazing
and the addition of fertiliser when compared with the adjacent agricultural leases which
comprised the remainder of Sub-area 1. Sub-area 2 (Figure 1), approximately 1.5 km to
the southeast of Sub-area 1, was used to provide a second location where the model
could be tested in an area where very detailed on-ground survey had been conducted
for the lizards (Osborne and Wong 2010). This sub-area was chosen because of the
detailed level of knowledge of the area and its occupancy by A. parapulchella.

Study species

The pink-tailed worm-lizard (Aprasia parapulchella) (Pygopodidae) Kluge 1974 is a threa-
tened legless-lizard found in temperate south-eastern Australia. Most of the known
records of occurrence of the species are in the ACT and adjacent areas of NSW with
scattered disjunct occurrences in other locations in NSW and Victoria (see Wong et al.
2011 for a review of the life history and ecology of this species). A. parapulchella is a
habitat specialist relying on native grass cover, lightly embedded rocks and a relatively
small number of small ant species on which it preys (Osborne et al. 1991, Jones 1999).
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Previous studies (Osborne et al. 1991, Jones 1992, 1999, Osborne and McKergow 1993)
have identified a number of habitat and environmental variables associated with the
occurrence of the species. The species appears to prefer Silurian-age volcanic geology
and the sandy-loam soils derived from this parent material (Osborne et al. 1991, Osborne
and McKergow 1993, Wong et al. 2011), gentle to steep slopes (although it is most
commonly on moderate slopes) and sites experiencing higher levels of solar radiation
(Osborne et al. 1991, Jones 1992). In the ACT, A. parapulchella has been mostly linked to
sites that include a relatively low cover of over-storey vegetation as well as native

Figure 1. Map showing location of the study area and occurrence records used in MaxEnt modelling.
The sub-area where the models were separately tested including the grid of points used for testing
(Sub-area 1) is shown as is the second sub-area where habitat had been mapped in the field and
extensively surveyed (Sub-area 2).
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grasses (particularly Themeda triandra) (Osborne et al. 1991, Osborne and McKergow
1993, Jones 1999, Wong 2013), and is likely to be more abundant at sites that contain
large-tussock forming species (Wong 2013). Such grasses decline with disturbance by
agricultural practices that include fertiliser addition and overgrazing (Stuwe and Parsons
1977, Groves et al. 2003, McIntyre and Tongway 2005). Conversely, A. parapulchella is
absent from rocky areas that exhibit exclusively exotic grass species as a result of
grazing, fertiliser addition or the combination of these practices (Osborne and
McKergow 1993, Jones 1999).

Data layer selection

Environmental layers and presence data for A. parapulchella were obtained from the ACT
Government (Environmental Planning and Sustainable Development Directorate,
Conservation Research). These data included ACT wildlife atlas records collected
between 1990 and 1997 (107 records) which had mostly been digitised from grid
references or maps from previous surveys (Barrer 1992, Jones 1992, 1999, Osborne
and McKergow 1993) and which were supplemented by 308 records collected using
GPS during extensive surveys conducted within the study area (Osborne and Coghlan
2004, Osborne and Wong 2010, Wong and Osborne 2010). To minimise sampling bias,
we performed spatial filtering (Kramer-Schadt et al. 2013) by removing any records that
were closer than 30 m from another record and excluding records that coincided with
areas that had been masked out of the agricultural modification layer. This left 336
occurrence records for the modelling. We also included climate variables for rainfall and
temperature in our model because, while the study area is small, there are significant
changes in elevation (~400 m ASL–1850 m ASL), which affect local climate (Adomeit
et al. 1987). We included mean October minimum temperature and mean monthly
rainfall as variables because A. parapulchella is thought to disperse and breed in spring
(Jones 1999). Minimum temperature was selected over maximum temperature because
low temperatures are generally more limiting to Australian reptiles than high tempera-
tures (Heatwole and Taylor 1987). The cell size for all environmental layers was 25 m.

Our initial set of environmental layers included topographical layers derived from a
25-m digital elevation model (DEM) of the ACT region and climatic layers for mean
monthly maximum and minimum temperature and mean monthly rainfall calculated
using ESOCLIM (Houlder et al. 2000, Xu and Hutchinson 2011), based on climate data
between 1976 and 2005 and a 25-m DEM (see Xu and Hutchinson 2011 for a map of
weather stations and for further details). Environmental layers were selected based on
their ecological relevance for the species (Austin 2002). Variables that were very highly
correlated (r > 0.75) (Figure S1) were removed.

As A. parapulchella is unlikely to be found in areas that have undergone very high
levels of agricultural modification (Osborne and McKergow 1993, Jones 1999) or where
grazing and fertiliser addition have increased the presence of exotic winter growing
plants in place of native summer growing grasses (Stuwe and Parsons 1977, Groves et al.
2003), we used a vegetation classification provided by the New South Wales Office of
Environment and Heritage (Environmental Research and Information Consortium 2001)
as an agricultural modification variable. This classification uses the differences in spectral
reflectance between remotely sensed images in spring and summer to discriminate
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between areas dominated by C4 (primarily summer growing native) and C3 (primarily
winter growing exotic or degraded native) areas and was based on the methods
developed by Langston (1996). The classification had been verified in the field
(Environmental Research and Information Consortium 2001). We reclassified the original
non-ordinal classification of 23 classes into four classes: native grassy areas (likely to be
C4 dominated); woodland; exotic or degraded native grassy areas; and unknown (not
extensively ground-truthed). It should be noted that all the areas that we visited that
had been classified as unknown largely consisted of exotic or degraded native vegeta-
tion; so we consider that vegetation in this ‘unknown’ class to be largely exotic or
degraded native vegetation. Some areas of the extent (forested areas of >30% tree
cover, and urban area) had been masked out when the original classification was
produced. However, we do not consider this to be a major limitation in the ACT because
A. parapulchella appears to largely avoid forested areas in this region (Wong et al. 2011).

We included surficial geology, soil type and slope in the model as all have been
described previously as being associated with the occurrence of A. parapulchella
(Osborne et al. 1991, Jones 1999). The geology and soils layers (provided by the ACT
Government) were derived from regional vector geology and soils maps and were
converted to non-ordinal 25-m grid format. The geology layer was derived from a
1:100,000 scale map series (Richardson and Barron 1977, Owen and Wyborn 1979a,
1979b, Abell 1992). The soils layer was derived from a combination of a regional soils
map and unpublished internal soils maps derived from surveys carried out by the ACT
Government (G. Hirth pers. comm., Environment Planning and Sustainable Development
Directorate, ACT Government, 2017 and M. Dunford, Geoscience Australia, 2017).
Exploratory analyses revealed that solar radiation had a negligible influence on the
model and so this variable was not included for reasons of parsimony.

Modelling

We used the MaxEnt package (Version 3.3.3e) (Phillips et al. 2004) to model the
distribution of A. parapulchella because our data consisted of presence-only records
and included categorical variables, both of which can be accommodated by the MaxEnt
approach. A total of 10 replicate model runs were generated using 168 randomly
selected records subsampled for training, with the remaining 168 records used for
testing for each replicate. We used surficial geology, soil type, slope, minimum tempera-
ture in October, rainfall in October and agricultural modification as our environmental
predictors. Of these, the surficial geology, soil type and agricultural modification vari-
ables were non-ordinal categorical variables and the remainder were continuous. We
included all feature types in the modelling (linear, quadratic, product threshold and
hinge). Regularisation values were: linear/quadratic/product: 0.050, categorical: 0.250,
threshold: 1.000, hinge: 0.500. The logistic output was used, but treated as an index of
habitat suitability rather than an actual probability of occurrence (Merow et al. 2013). For
all other parameters we used the default settings. As we preselected a small number of
predictor variables, we did not consider it necessary to increase the regularisation
multiplier.
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Field mapping

Detailed mapping of suitable habitat for A. parapulchella was available from previous
surveys. In particular, Sub-area 2 (Figure 1) had been mapped and all rocky areas
surveyed for lizards (Wong and Osborne 2010, Wong and Osborne, unpublished data)
and therefore provided an area of detailed knowledge about potential habitat that could
be used to compare model outputs. Parts of Sub-area 1 were mapped with some areas
surveyed for lizards (Barrer 1992, Osborne and Wong 2010).

Where detailed mapping had been undertaken (Osborne and Wong 2010), areas of
rocky habitat were digitised in a GIS using a fine resolution (10 cm resolution) orthopho-
tograph layer provided by the Environment Planning and Sustainable Development
Directorate, ACT Government. Digitised habitat patches were then field checked and
classified into three categories: high, moderate or low quality potential habitat. We
considered potential habitat to be high quality if it contained suitable rocky habitat and
vegetation dominated by native large tussock species (e.g. Aristida ramosa, Cymbopogon
refractus, Dianella spp., Lomandra spp., Poa sieberiana, Sorghum leiocladum or Themeda
triandra) (McIntyre and Tongway 2005) or with a diverse range of disturbance-sensitive
species (Rehwinkel 2007) both of which are characteristic of low levels of disturbance;
moderate quality if it contained suitable rocky habitat but was dominated by more
disturbance-tolerant C3 native grasses such as Rytidosperma spp. and Austrostipa spp.
and contained little or no occurrence of disturbance-sensitive forb species; and low quality
if it contained suitable rock but had very little or no evidence of native grass species
(usually as a result of extreme levels of agricultural or forestry-related disturbance).

Testing the effect of agricultural modification

To test the contribution of agricultural modification data to the model, ten additional
model replicates were run as described above with the agricultural modification layer
omitted. From this point forward, the models are referred to as Model.ag (agricultural
modification included) and Model.no.ag (agricultural modification omitted). We also ran
ten null model replicates (Model.null) for testing, which used the same settings and
inputs as Model.ag, but used 344 points (172 training; 172 testing) randomly generated
in ArcGIS rather than records of occurrence.

We compared the area under the receiver operating curve (AUC) (Hanley and NcNeil 1982,
Pearce and Ferrier 2000) and gain (Phillips 2017) values calculated by MaxEnt for Model.ag
and Model.no.ag using two-sample Student’s t-tests and compared values for Model.ag and
Model.null using a Welch’s unequal variances two-sample t-test. We also interpreted the
variable contribution and jackknife analysis. The gain is a measure of the improvement in
penalised average log likelihood compared to a null model (Elith et al. 2011). Higher values of
AUC and gain indicate better model performance. The jackknife analysis creates models with
all variables, but which exclude each variable in turn, as well as models of each variable in
isolation in order to test their contribution to the models (Phillips 2017).

Within Sub-area 1, we compared the mean logistic value of Model.ag and Model.no.
ag corresponding with known occurrence records of the species (74 records), using a
two-sample Student’s t-test. We then compared the mean logistic value of Model.ag and
Model.no.ag corresponding with a regular grid of points within Sub-area 1 that excluded
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known occurrence locations and sites with known potential suitable habitat. As not all
the habitat in the sub-area was mapped, the resulting regular grid represented a
random sample of 133 points biased towards habitat that was likely to be unsuitable
rather than habitat that was actually unsuitable. If the Model.ag performed better, we
expected it to predict higher suitability at known occurrence sites and lower suitability
at the points biased towards likely unsuitable habitat than Model.no.ag.

We then produced binary suitability models for Model.ag and Model.no.ag using the
threshold suggested by MaxEnt that maximised specificity (equal training sensitivity and
specificity) and a threshold of 0.5 (determined as providing a good approximation for the
most suitable mapped habitat in Sub-area 2 when a range of thresholds were tested) to
determine the cut-off for suitability, and generated confusionmatrices for Sub-area 1 (Fielding
and Bell 2002). MaxEnt suggests a range of possible thresholds that can be used. The most
stringent of the thresholds suggested by MaxEnt was chosen because comparisons with
mapped habitat suggested there was over-prediction associated with the thresholds sug-
gested byMaxEnt and the ‘equal training sensitivity and specificity’ thresholdwas the one that
minimised over-prediction. The threshold of 0.5 was used as it provided a better match of
mapped suitable habitat within Sub-area 2 than those suggested by MaxEnt. These compar-
isons were achieved by examining predicted suitability of Model.ag at a range of thresholds
(i.e. 0.35, 0.40, 0.45, 0.50, 0.55, 0.60 and 0.65). Between 0.35 and 0.5 changes to the output
were substantial but beyond 0.5, changes to the output were negligible, so 0.5 was chosen as
the threshold to represent the most suitable habitat. It should be noted that the species can
still occur in less suitable habitat, but the threshold of 0.5 appeared to provide a good estimate
for the best quality habitat in Sub-area 2. From the confusion matrices, we calculated the
overall performance (correct classification rate), omission rate (proportion of known presences
predicted as absent) and commission index (proportion of points from the regular grid biased
towards likely absence predicted as presences) (Fielding and Bell 2002, Anderson et al. 2003).

To examine how Model.ag and Model.no.ag differed according to vegetation type
across the ACT, we calculated the area of habitat predicted to be suitable by each model
(using the equal training sensitivity and specificity threshold) within each of the four
vegetation classes derived from the remotely sensed vegetation classification.
Specifically, we multiplied the binary suitability layer for Model.ag and Model.no.ag by
the vegetation classification layer using the Raster Calculator in ArcGIS to determine the
distribution of vegetation classes corresponding with suitable habitat for Model.ag and
Model.no.ag. We then subtracted one of the resulting layers from the other to determine
where the models differed spatially and generated a difference plot of the two models.

To estimate how much of the habitat most suitable for A. parapulchella has declined
through conversion to agriculture, we compared the outputs of the Model.ag and Model.
no.ag using a threshold of 0.5 (as determined by comparison to known habitat). We used
ArcGIS to map grid squares where the predictions of Model.ag and Model.no.ag differed
and calculated the percentage of pixels in each of the four vegetation classes that were
predicted to be suitable by Model.no.ag, but were predicted not suitable by Model.ag. If
these pixels now characterised by exotic or degraded native vegetation were in fact
suitable habitat before agricultural modification, then their area provides an estimate of
the percentage of suitable habitat that has been lost. This estimate also depends on the
assumption that current presence of introduced C3 vegetation is not correlated with some
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other important environmental predictor of lizard habitat suitability that was not included
in the model. This issue is addressed further in the discussion.

Finally, we compared binary predictions of habitat suitability from Model.ag and
Model.no.ag (calculated using both thresholds) with mapped habitat from previous
surveys to assess how well each of the models predicted known habitat.

Results

All AUC and gain values were significantly higher (p < 0.01) for Model.ag (Mean training
AUC: 0.935; Mean SD: 0.007; Mean regularised training gain: 1.453) compared with
Model.no.ag (Mean training AUC: 0.928; Mean SD: 0.007; Mean regularised training
gain: 1.361) indicating that Model.ag performed significantly better than Model.no.ag
(Table 1). Model.ag had AUC and gain values much higher than Model.null (Mean
training AUC: 0.621; Mean SD: 0.022; Mean regularised training gain: 0.050) with extre-
mely high significance values (p < 0.01) (Table S1).

The estimates of variable contribution (Table 2) indicate that soil type (30.9%) had the
greatest influence on the model followed by slope (19.8%), surficial geology (17.8%), average
minimum temperature in October (16%) and rainfall in October (15.5%). The contribution of
agricultural modification to the model was 7.8% when included. MaxEnt response curves for
the variables are shown in Figure S2. The jackknife analysis (Figure S3) indicated that surficial
geology contributedmost to the gain in isolation from the other variables; however, omission
of the soil variable led to the greatest decrease in gain, suggesting that the soils variable
accounted for the highest amount of variation not explained by other variables. The jackknife
analysis and the estimates of variable contribution showed some differences but both
analyses showed that the most influential variables were geology, soils, slope and tempera-
ture, with rainfall having less influence and agricultural modification showing the least
influence. The jackknife analysis and analysis of variable contribution can be affected by
inter-correlation between predictor variables, so these results should be interpreted with
caution, but shed light on broader patterns of variable contribution.

The mean logistic values of Model.ag and Model.no.ag at presence locations in Sub-
area 1 were not significantly different. Conversely, the mean logistic value, at locations
on the regular grid of points which were biased towards likely unsuitable habitat, was

Table 1. Area under the receiver operating curve (AUC) and gain values for MaxEnt models for
Aprasia parapulchella in the Australian Capital Territory with (Model.ag) and without (Model.no.ag)
the inclusion of an agricultural modification layer as well as two-sample t-test results comparing
differences between the mean values.

Mean value
Model.ag

Mean value
Model.no.ag

Two-sample
t- test
value

Regularised training gain 1.453 1.361 4.22**
Unregularised training gain 1.718 1.624 3.37**
Unregularised test gain 1.558 1.468 3.33**
Training AUC 0.935 0.928 3.03**
Test AUC 0.922 0.915 2.97**
AUC Standard deviation 0.007 0.0072 1.00 (ns)

** p < 0.01; ns: not significant.
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significantly lower for Model.ag when compared with Model.no.ag (t = 2.32; p = 0.021),
indicating a much lower likelihood of false positives associated with Model.ag (Table 3).

Examination of the confusion matrices for Model.ag and Model.no.ag using the equal
sensitivity and specificity threshold and the threshold of 0.5 (Table 4) indicated that,
whilst the omission rate was slightly lower for models without agricultural modification,
the commission index was markedly higher. As a result, correct classification rates were
higher for models with agricultural modification. When a threshold of 0.5 was applied to
the model the omission rate increased, but the commission index decreased, particularly
for Model.ag, leading to an increased correct classification rate. For the threshold of 0.5,
the total area predicted by the model with agricultural modification was 71.7% of that
predicted by the model without agricultural modification (Table 4).

When we applied the equal sensitivity and specificity threshold, Model.ag predicted a
larger proportion of habitat corresponding with areas classed as native in the remotely
sensed classification across the study area compared with Model.no.ag. Conversely,
Model.no.ag predicted a higher proportion of habitat corresponding to areas classed
as exotic or degraded native in the remotely sensed classification than did Model.ag
(Figure 2). Where the models differed, Model.ag predicted pixels not predicted by
Model.no.ag largely in the native class, while Model.no.ag predicted pixels not predicted
by Model.ag largely in the exotic/degraded native class but also to some extent in the
woodland and unknown classes (Figure 3).

When we analysed differences between Model.ag and Model.no.ag (using a threshold
of 0.5) in Sub-area 1, we found that areas classed as exotic/degraded native vegetation
and predicted as suitable by Model.ag, but not predicted as suitable by Model.no.ag,

Table 2. Estimates of relative contribution of variables in environmental niche models for Aprasia
parapulchella with (Model.ag) and without (Model.no.ag) the inclusion of an agricultural modifica-
tion variable. MaxEnt obtains the estimate by adding or subtracting (if the lambda value is negative)
the absolute value of increase or decrease in regularised training gain to the contribution of the
variable in each iteration of the training algorithm.

Percentage contribution (Model.ag) Percentage contribution (Model.no.ag)

Soils 30.9 28.9
Slope 19.8 17.3
Geology 17.8 17
Average minimum temp. (October) 16 15.3
Average rainfall (October) 15.5 13.7
Agricultural modification 7.8 N/A

Table 3. Results of the two-sample t-test comparing mean logistic suitability value for models with
(Model.ag) and without (Model.no.ag) agricultural modification included using: (a) records from an
area of approximately 6 km × 7 km area (Sub-area 1) which contained a range of levels of
agricultural disturbance and (b) a regular grid of points from the same area biased towards locations
that are likely to be unsuitable. Higher values indicate a higher likelihood that the area is predicted
by the model as suitable.

Mean logistic suitability
value (Model.ag)

Mean logistic suitability
value (Model.no.ag) df t -Value p-Value

(a) Records 0.602 0.610 146 0.317 0.752 (ns)
(b) Regular grid biased towards

likely unsuitable locations
0.324 0.383 264 2.317 0.021*

* p < 0.05.
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accounted for 31.5% of Sub-area 1. This figure increased to 35.2% when both the exotic/
degraded native and unknown classes were considered together. When the calculation
was applied across the whole modelling extent, the corresponding values were 21%
(exotic) and 22.3% (exotic + unknown).

Table 4. Model evaluation figures derived from confusion matrices for MaxEnt models with (Model.
ag) and without (Model.no.ag) the agricultural modification variable included in Sub-area 1. The
performance of the models was assessed based on 74 presence points and a regular grid of 133
points that was biased towards habitat likely to be unsuitable by excluding random points that
coincided with mapped habitat in the study area. Values are given for models using the threshold
for presence suggested by MaxEnt that maximised model specificity (equal training sensitivity and
specificity) as well as for a threshold of 0.5 that predicted optimal habitat in an area of known
mapped habitat (Sub-area 2) when used with Model.ag.

Equal training sensitivity and specificity threshold Threshold of 0.5

Model.ag (threshold:
0.341)

Model.no.ag (threshold:
0.32) Model.ag Model.no.ag

Overall performance (Correct
classification rate)

0.70 0.61 0.75 0.71

Omission error (false negative
rate)

0.04 0.08 0.26 0.23

Commission index (false positive
rate)

0.45 0.56 0.24 0.32

Proportion of pixels predicted
present

0.51 0.59 0.28 0.39

Area predicted present (ha)
(Total area = 4076.5 ha)

2065.9 2394.7 1146.7 1598.8

Figure 2. The percentage of the total area in each remotely sensed vegetation class derived from
the remotely sensed classification predicted to be suitable by the two MaxEnt models Model.ag and
Model.no.ag using the equal sensitivity and specificity threshold.
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By visually comparing the outputs of Model.ag and Model.no.ag to mapped habitat in
Sub-area 2 (Figure 4), it was clear that the model with agricultural modification better
characterised the actual extent of suitable habitat. The presence threshold suggested by
MaxEnt led to models which over-predicted suitable habitat in Sub-area 2, whether
agricultural modification was included or not. Using a threshold of 0.5 resulted in predic-
tions that closely matched the higher quality habitat areas for Model.ag. By contrast, the
changes to Model.no.ag were slight when a threshold of 0.5 was used (Figure 4).

Discussion

We demonstrate that including agricultural modification as a variable markedly
improved the environmental niche model for the threatened, habitat specialist, the
pink-tailed worm-lizard (A. parapulchella), particularly in areas that have undergone
agricultural disturbance. This finding strengthens the argument that agricultural mod-
ification such as intensive grazing and pasture improvement are likely to promote
contraction or loss of A. parapulchella across its range (Langston 1996, Jones 1999). It
is possible that C3 vegetation may in some places be correlated with some unmeasured
variable important to A. parapulchella, such as seasonal water abundance (Murphy and
Bowman 2007) or rockiness. However, the effect of such variables is likely to be localised

Figure 3. Difference plot showing total area within each of the remotely sensed vegetation classes
predicted by one model but not the other. To generate the difference plot predicted suitability was
determined based on the equal sensitivity and specificity threshold and each binary layer multiplied
by the vegetation class layer using the Raster Calculator tool in GIS. The resulting layers were then
subtracted to determine areas of difference so that areas in common between the models would
have a zero value and unique areas would retain their vegetation class value.
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compared with the extensive conversion of C4 grasses such as Themeda triandra to C3
species as a result of agricultural practices (Stuwe and Parsons 1977, Groves et al. 2003,
McIntyre and Tongway 2005). The negative effect of this change in grassland community
on the presence and abundance of A. parapulchella has been observed in a number of
studies (Jones 1992, 1999, Osborne and McKergow 1993, Wong 2013). While the per-
centage contribution of the agricultural modification variable was lower than the con-
tribution of other variables and the increase in AUC value was not large (Table 1), this is
likely to be due to the influence of spatial scale. Variables that act on a broader spatial
scale, such as climate, geology and topography, are likely to be the most influential
variables over the whole study area, whilst disturbance is important at finer scales
(Mackey and Lindenmayer 2001). Therefore, the changes to the model as a result of
adding agricultural modification as a factor are likely to be in the form of refinements at
the local scale rather than major changes to the model. Nonetheless, the analyses
showed that the improvement to model specificity was marked at finer spatial scales
(Table 3; Table 4; Figure 4). Such models are therefore likely to be of use to farmers,

Figure 4. Comparison of thresholded MaxEnt model without (a) and with (b) the agricultural
modification variable included within Sub-area 2 (see Figure 1), a location where potential habitat
for A. parapulchella had been mapped in the field using expert knowledge of habitat requirements
(see Field Mapping section in Methods for an explanation of how habitat was classified). The models
were converted to presence/absence predictions by using the threshold selected by MaxEnt that
maximised specificity (depicted in light grey) and a threshold of 0.5 (depicted in dark grey). White
areas indicate areas not predicted as suitable by either of the models or had been masked out of
one of the input layers (e.g. river).
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planners and conservation managers as this is often the scale at which farm or reserve
management is planned and implemented.

Comparison of the models

Our finding that including agricultural modification improves model specificity (Table 3;
Table 4) is consistent with our knowledge of the ecology of A. parapulchella and is likely
to also apply to other species sensitive to agricultural disturbance. As agricultural
disturbance reduces the amount of suitable habitat, it reduces the geographical range
of potentially suitable habitat that can be exploited. Therefore, incorporation of agri-
cultural modification should allow better prediction of the extent of this geographical
distribution across landscapes that have been modified for over 100 years. Inspection of
the model outputs in conjunction with the results of field mapping of potential habitat
for A. parapulchella showed that the model with agricultural modification included was
much more effective in predicting the actual extent of habitat (as mapped by experts in
the field). However, the predicted presence/absence layer based on the threshold
suggested by MaxEnt that maximised model specificity still appeared to over-estimate
the amount of suitable habitat and the area predicted was almost double the area of the
presence/absence model that used a threshold of 0.5 (Table 4). The findings indicate
that neglecting to include agricultural modification data can lead to over-prediction of
suitable habitat in areas that have undergone high levels of agricultural modification.
This could lead to managers believing that unsuitable areas are in fact suitable for the
species. Interestingly, MaxEnt is known for performing well with respect to errors of
commission or over-prediction of suitable habitat (Elith et al. 2006, Swenson 2008)
although some over-prediction, particularly at very fine spatial scales, is to be expected.
However, the prevalence of a given species may influence prediction in methods (such
as MaxEnt) which use the receiver operating curve to optimise thresholds (Manel et al.
2001) and prevalence may be difficult to determine.

The results of the modelling suggest that agricultural modification may have led to a
decline or loss of at least 30–35% of the most suitable habitat in Sub-area 1 (Table 4).
Applying this calculation across the ACT suggests a decline or loss of approximately 20%
or more of the most suitable habitat across the ACT as a result of agricultural modifica-
tion. These estimates incorporate the assumptions that: (1) based on the agreement
between known mapped habitat with model predictions (Figure 4), using a suitability
threshold of 0.5, Model.no.ag represents suitable areas of optimal habitat for A. para-
pulchella; and (2) that the remotely sensed vegetation classification used to indicate
agricultural modification is not correlated with some other important environmental
factor not included in the environmental niche model. It should be noted that both
models are based on modern-day occurrence records (since 1974) and this is likely to
have influenced the model. For example, the species may be completely absent from
areas in the environmental space that have experienced long periods of intensive
agricultural disturbance. Conversely, not all potentially suitable or predicted habitat is
occupied, and if the proportion of degradation is higher in predicted habitat that is not
occupied than in areas that are, the estimate may be higher than the actual loss or
degradation of habitat. Therefore, the estimates of loss and degradation of habitat may
be lower or higher than the actual loss and degradation that has occurred. Whilst this
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possibility should be considered, the findings of this study suggest there is potential for
comparison of models with and without a disturbance variable to identify areas where a
given species has declined as a result of disturbance as well as to monitor or document
decline or improvement of the habitat of species or communities.

We found that Model.ag predicted a higher area of native grass cover (C4) and a lower
area of exotic/degraded native (C3) grass cover as being suitable than did Model.no.ag
(Figures 2, 3). Therefore, the predictions of the Model.ag are more consistent with findings
that A. parapulchella requires areas dominated by native vegetation and cannot persist in
areas that have undergone very high levels of agricultural modification, characterised by a
cover of almost exclusively exotic grasses (Osborne and McKergow 1993, Jones 1999).
Nonetheless, some of the areas classed as exotic may, in fact, be degraded native areas
dominated by C3 species of grass (R. Rehwinkel, NSW Office Environment and Heritage,
pers. comm.). Such areas may still support A. parapulchella (Jones 1999), so this should be
considered when interpreting the model and when optimising thresholds against known
habitat. It is likely that models including agricultural disturbance will be useful for
identifying the highest quality potential habitat for the species as well as fine-scale
differences in habitat suitability, thereby identifying the most ecologically intact areas
that are critical for the conservation of the species. As the vegetation classification we
used may not reflect recent changes in vegetation characteristics, determining the current
disturbance status of the vegetation through remote sensing is likely to improve the
model. Further refinement of the model may also be possible if spectral data or LiDAR
data (Sillero and Gonçalves-Seco 2014) can be used to identify rocky areas as the species is
dependent on areas of shallowly embedded rock in the ACT (Wong et al. 2011).

The limitations of using thresholds are well recognised and, increasingly, it is recom-
mended that thresholds are not used at all (Merow et al. 2013). Still, there may be cases
where thresholding is seen as necessary. The results indicate that the threshold used as a
cut-off for predicting the presence of the species is important, and thresholds suggested by
MaxEnt may over-predict suitable habitat in some situations (Figure 4). One of the possible
reasons for this is that many users of modelling software such as MaxEnt are interested in
the overall distribution of species, often at broad spatial scales (Pearson and Dawson 2004).
Some research also indicates that using AUC to optimise thresholds for predicted occur-
rence can lead to overestimation of suitable habitat for species which have low prevalence
in the landscape (Manel et al. 2001). However, the threshold used depends on the purpose.
If the goal is to find all areas where a species may occur across the region (e.g. for impact
assessment where a precautionary approach is desirable), a conservative threshold would
be appropriate. If fine-scale prediction of high quality suitable habitat is the goal, higher
thresholds may be favoured (Pearce and Ferrier 2000). In such cases, optimisation of
thresholds to minimise commission error may be appropriate. However, for presence-only
modelling, this may be a challenge if the rate of occurrence of the species in the landscape is
unknown (Anderson et al. 2003, Elith et al. 2011). Optimisation using mapped habitat, as we
have done in this study, is an effective way of addressing this problem.

Conclusion

There are clear implications of this modelling for the longer term conservation of
A. parapulchella. With increased demands on land for agriculture, land managers may
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decide to increase the extent of pasture improvement on their properties. Our research
shows that such actions are incompatible with the protection of habitat for this vulnerable
species. Of concern is the situation in the Australian Capital Territory, which is considered to
be the stronghold for A. parapulchella and where all land is leased from the government
rather than privately owned. Indeed, this may explain, at least in part, its stronghold status
(Langston 1996, Jones 1999). Since 1999, permitted lease terms in this jurisdiction have
increased substantially to 99 years (previously 20 years or 50 years) (Australian Capital
Territory Planning and Development Act 2017). This increase in certainty of tenure is likely
to result in further pasture improvement. With demand for agricultural land increasing
worldwide,many species will face similar threats. Incorporating agricultural disturbance into
models that estimate the distribution of such species will therefore be increasingly impor-
tant if managers wish to accurately predict their occurrence.
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